Analysis of Vitamin D₂ and Vitamin D₃ by LC-MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals

Brendon D. Gill^a, Grant A. Abernethy^b, Rebecca J. Green^a, Harvey E. Indyk^a

^a Fonterra Co-operative Group Ltd, PO Box 7, Waitoa 3380, New Zealand

^b Fonterra Research and Development Centre, Dairy Farm Rd, Palmerston North 4442, New Zealand

AOAC Official Method 2016.05

Analysis of Vitamin D2 and Vitamin D3 in Fortified Milk Powders, Infant Formulas, and Adult/Pediatric Nutritional Formulas

Liquid Chromatography–Tandem Mass Spectrometry

First Action 2016

(Applicable to the determination of vitamin D_2 and vitamin D_3 in supplemented milk powders, infant formula and adult/pediatric nutritional formula).

Caution: Refer to the material safety data sheets for all chemicals prior to use. Use all appropriate personal protective equipment and follow good laboratory practices.

A. Principle

Samples are saponified at high temperature then lipid soluble components are extracted into isooctane. A portion of the isooctane layer is transferred, washed, and an aliquot of 4-phenyl-1,2,4-triazoline-3,5-dione is added to derivatize vitamin D to form a high molecular mass, easily ionisable adduct. The vitamin D-adduct is then re extracted into a small volume of acetonitrile and analysed by reverse-phase liquid chromatography. Detection is by triple quadrupole mass spectrometer using multiple reaction monitoring (MRM). Stable isotope labelled (SIL) vitamin D2 and vitamin D3 internal standards are used for quantitation to correct for losses in extraction and any variation in derivatisation and ionisation efficiencies.

Published as: Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2017) Analysis of Vitamin D₂ and Vitamin D3 by LC MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals. Journal of AOAC International 100, 298–302. DOI: $10.5740/jaoacint.2016_{05}$

2. Apparatus

- (a) UHPLC system, consisting of dual pump system, a sample injector unit, a degasser unit, and a column oven (Shimadzu Nexura or equivalent).
- (b) Triple quadrupole mass spectrometer (Sciex 6500 QTrap or equivalent)
- (c) Column, Kinetex C_{18} core-shell, 2.6 μ m, 2.1 mm × 50 mm, (Phenomenex or equivalent)
- (d) Spectrophotometer.—Capable of digital readout to 3 decimal places.
- (e) Centrifuge tubes, polypropylene, 15 mL.
- (f) Boiling tubes, glass, 60 mL.
- (g) Water baths, cold 20 °C, hot 70 °C.
- (h) Disposable syringes, capacity 1 mL.
- (i) Syringe filters, PTFE, 0.2 μm, 13 mm.
- (j) Centrifuges, suitable for 60 mL boiling tubes and 15 mL centrifuge tubes.
- (k) Pasteur pipettes, glass, ~140 mm.
- (I) Horizontal shaker.
- (m) Eppendorf vials, 2 mL.
- (n) Filter membranes, 0.2 μ m × 47 mm, nylon.
- (o) Cryogenic vials, 2 mL.
- (p) Schott bottles, 1 L, 100 mL.

2.2. Reagents

- (a) Standards.—Should be \geq 99% pure.
 - (1) Vitamin D₂, ergocalciferol.
 - (2) Vitamin D₃, cholecalciferol.
 - (3) *d6*-Vitamin D₂, 26, 26, 26, 27, 27, 27-*d6* ergocalciferol.
 - (4) d6-Vitamin D₃, 26, 26, 26, 27, 27, 27-d6 cholecalciferol.
- (b) PTAD (4-phenyl-1,2,4-triazoline-3,5-dione).
- (c) Formic acid (HCO₂H), LC-MS grade.
- (d) Potassium hydroxide (KOH).
- (e) Pyrogallol ($C_6H_3(OH)_3$).

- (f) Ethanol (C_2H_5OH).
- (g) Methanol (CH₃OH), LC-MS grade
- (h) Isooctane $((CH_3)_3CCH_2CH(CH_3)_2)$.
- (i) Acetone (CH₃COCH₃).
- (j) Acetonitrile (CH₃CN). LC-MS grade
- (k) Water.—Purified with resistivity $\geq 18 \text{ M}\Omega$.

2.3. Standards

- (a) PTAD Solution (4-phenyl-1,2,4-triazoline-3,5-dione, 10 mg/mL). Dissolve 50 mg PTAD in 5.0 mL acetone.
- (b) Potassium Hydroxide Solution (KOH, 50% w/v). Dissolve 100 g potassium hydroxide in 200 mL water.
- (c) Ethanolic Pyrogallol Solution (C6H3(OH)3, 1% w/v). Dissolve 5 g pyrogallol in 500 mL of ethanol.
- (d) Mobile Phase A (HCO₂H, 0.1% v/v). To 500 mL of water, add 0.5 mL formic acid
- (e) Mobile Phase B (CH₃OH, 100% v/v). Methanol, 500 mL

2.4. Sample collection

Vitamin D is sensitive to light; perform all steps under low-level incandescent lighting. If exclusively vitamin D_3 is required for analysis, then standards pertaining to vitamin D_2 need not be used and vice versa. Calibration standards should be bracketed at the beginning and at the end of an analytical run.

- (a) Vitamin D₂ Stable Isotope Labelled Stock Standard Solution (~10 μg/mL)—Dispense the contents of a 1 mg vial of d6 vitamin D₂ into a 100 mL volumetric flask. Dissolve in 90 mL of ethanol; to promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol. Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol blank solution. Calculate and record concentration. Immediately dispense aliquots (~1.3 mL) into cryogenic vials and freeze at < -15 °C for up to 6 months.
- (b) Vitamin D₃ Stable Isotope Labelled Stock Standard Solution (~10 μ g/mL)—Dispense the contents of a 1 mg vial of d6 vitamin D₃ into a 100 mL volumetric flask. Dissolve

in 90 mL of ethanol; to promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol. Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol blank solution. Calculate and record concentration. Immediately dispense aliquots (~1.3 mL) into cryogenic vials and freeze at < -15 °C for up to 6 months.

- (c) Stable Isotope Labelled Internal Standard Solution (1 μg/mL)—Depending on the number of samples that need to be analyzed in a run, more or less Stable Isotope Labelled Internal Standard Solution needs to be made up. For every 15 samples (or part thereof) in an analytical run, remove 1 vial of Vitamin D₂ Stable Isotope Labelled Stock Standard Solution and/or 1 vial of Vitamin D₃ Stable Isotope Labelled Stock Standard Solution from the freezer and allow to warm to room temperature.
 Pipette 1.0 mL of Vitamin D₂ Stable Isotope Labelled Stock Standard Solution and/or 1.0 mL of Vitamin D₃ Stable Isotope Labelled Stock Standard into a 10 mL volumetric flask (use a separate 10 mL volumetric flask for each set of 15 samples). Make each 10 mL volumetric flask to volume with acetonitrile, pool together and mix thoroughly. Make fresh daily.
- (d) Vitamin D₂ Non-Labelled Stock Standard Solution (~1 mg/mL)—Weigh accurately, approximately 50 mg of vitamin D₂ into a 50 mL volumetric flask. Dissolve in 40 mL of ethanol; to promote dissolution sonicate if necessary. Mix thoroughly, make up to volume with ethanol. Store in freezer at <-15 °C for up to 1 month.
- (e) Vitamin D₃ Non-Labelled Stock Standard Solution (~1 mg/mL)—Weigh accurately, approximately 50 mg of vitamin D3 into a 50 mL volumetric flask. Dissolve in 40 mL of ethanol; to promote dissolution sonicate if necessary. Mix thoroughly, make up to volume with ethanol. Store in freezer at <-15 °C for up to 1 month.</p>
- (f) Vitamin D₂ Non-Labelled Purity Standard Solution (~10 μg/mL) —Pipette 1.0 mL of Vitamin D₂ Non-Labelled Stock Standard Solution into a 100 ml volumetric flask.
 Make to volume with ethanol. Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol blank solution. Record absorbance and calculate concentration. Make fresh daily.
- (g) Vitamin D₃ Non-Labelled Purity Standard Solution (~10 μ g/mL)—Pipette 1.0 mL of Vitamin D₃ Non-Labelled Stock Standard Solution into a 100 mL volumetric flask. Make to volume with ethanol. Measure the absorbance of an aliquot at 265 nm.

The spectrophotometer should be zeroed against an ethanol blank solution. Record absorbance and calculate concentration. Make fresh daily.

- (h) Non-labelled Working Standard Solution (~1 μ g/ml)—Pipette 1.0 mL of Vitamin D₂ non-labelled purity standard solution and/or 1.0 mL of Vitamin D₃ Non-Labelled Purity Standard Solution into a 10 mL volumetric flask. Make to volume with acetonitrile and mix thoroughly. Make fresh daily.
- Calibration Standards— See Table 2016.05A for nominal vitamin D concentrations of the Calibration Standard Solutions. Make fresh daily.
 - (1) Calibration Standard 1—Pipette 10 µL of Non-Labelled Working Standard Solution and 250 µL of Stable Isotope Labelled Internal Standard Solution into a 25 mL volumetric flask. Add 5 mL of acetonitrile and 75 µL of PTAD Solution, shake to mix and leave in the dark for 5 min. Add 6.25 mL of water then make to volume with acetonitrile, mix, and transfer to HPLC vial ready for analysis.
 - (2) Calibration Standard 2—Pipette 50 μL of Non-Labelled Working Standard Solution and 250 μL of Stable Isotope Labelled Internal Standard Solution into a 25 mL volumetric flask. Add 5 mL of acetonitrile and 75 μL of PTAD Solution, shake to mix and leave in the dark for 5 min. Add 6.25 mL of water then make to volume with acetonitrile, mix, and transfer to HPLC vial ready for analysis.
 - (3) Calibration Standard 3—Pipette 250 μL of Non-Labelled Working Standard Solution and 250 μL of Stable Isotope Labelled Internal Standard Solution into a 25 mL volumetric flask. Add 5 mL of acetonitrile and 75 μL of PTAD Solution, shake to mix and leave in the dark for 5 min. Add 6.25 mL of water then make to volume with acetonitrile, mix, and transfer to HPLC vial ready for analysis.
 - (4) Calibration Standard 4—Pipette 500 μL of Non-Labelled Working Standard Solution and 250 μL of Stable Isotope Labelled Internal Standard Solution into a 25 mL volumetric flask. Add 5 mL of acetonitrile and 75 μL of PTAD Solution, shake to mix and leave in the dark for 5 min. Add 6.25 mL of water then make to volume with acetonitrile, mix, and transfer to HPLC vial ready for analysis.

Published as: Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2017) Analysis of Vitamin D_2 and Vitamin D3 by LC MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals. Journal of AOAC International 100, 298–302. DOI: 10.5740/jaoacint.2016_05

(5) Calibration Standard 5—Pipette 1250 μL of Non-Labelled Working Standard Solution and 250 μL of Stable Isotope Labelled Internal Standard Solution into a 25 mL volumetric flask. Add 5 mL of acetonitrile and 75 μL of PTAD Solution, shake to mix and leave in the dark for 5 min. Add 6.25 mL of water then make to volume with acetonitrile, mix, and transfer to HPLC vial ready for analysis.

Calibration Standard	Vitamin D Concentration	d6-Vitamin D Concentration			
	(ng/mL)	(µg/mL)			
1	0.4	10			
2	2.0	10			
3	10	10			
4	20	10			
5	50	10			

Table 2016.05A. Nominal concentration of Calibration Standards

F. Sample Preparation

- (a) Powder sample preparation
 - Accurately weigh 1.8–2.2 g of powder sample into a boiling tube. Record weight.
- (b) Powder sample preparation
 - Accurately weigh 19.0–21.0 g of powder to a disposable slurry container.
 Record weight.
 - (2) Accurately weigh ~80 mL water to container. Record weight.
 - (3) Shake thoroughly until mixed. Place in dark at room temperature for 15 min and shake to mix every 5 min.
 - (4) Accurately weigh 9.5–10.5 g of slurry or reconstituted powder sample into a boiling tube. Record weight.
- (c) Liquid sample preparation
 - (1) Accurately weigh 10.0 mL of liquid milk into a boiling tube. Record weight.

Published as: Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2017) Analysis of Vitamin D₂ and Vitamin D3 by LC MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals. Journal of AOAC International 100, 298–302. DOI: $10.5740/jaoacint.2016_{05}$

G. Extraction and Derivatization

- (a) To powder, slurry, or liquid sample in a boiling tube, add 10 mL Ethanolic Pyrogallol Solution, add 0.50 mL of Stable Isotope Labelled Internal Standard Solution, cap and vortex mix.
- (b) Add 2 mL of Potassium Hydroxide Solution to boiling tube; cap and vortex mix.
- (c) Place boiling tube in water bath at 70°C for 1 h, vortex mix every 15 min.
- (d) Place boiling tube in water bath at 70°C until cool.
- (e) Add 10 mL isooctane to boiling tube; cap boiling tube tightly and place on horizontal shaker for 10 min.
- (f) Add 20 mL of water to boiling tube and invert tube 10 times; place in centrifuge at \geq 250 × g for 15 min.
- (g) Transfer a 5 mL aliquot of the upper isooctane layer into a 15 mL centrifuge tube using a Pasteur pipette, taking care NOT to transfer any of the lower layer (discard boiling tube with lower layer).
- (h) Add 5 mL of water to centrifuge tube; cap and vortex mix; place in centrifuge at 2000 × g for 5 min.
- (i) Transfer 4–5 ml of upper isooctane layer to a new 15 mL disposable centrifuge tube using a disposable pipette, taking care NOT to transfer any of the lower layer (discard centrifuge tube with lower layer).
- (j) Add 75 µL of PTAD solution to centrifuge tube; cap and immediately vortex mix.
- (k) Allow to stand in dark for 5 min to allow for derivatization reaction to complete.
- Add 1 mL acetonitrile to centrifuge tube, cap and vortex mix; place in centrifuge at 2000 × g for 5 min.
- Using a variable volume pipette, transfer 500 μL of the lower layer into an
 Eppendorf vial taking care not to transfer any of the upper layer.
- (n) Add 167 μ L of water to the Eppendorf vial; cap and vortex mix.
- Using a syringe filter, transfer an aliquot from Eppendorf vial to an amber HPLC vial;
 cap ready for analysis.

H. Chromatography

(a) Set-up the UHPLC system with the following configuration shown in Table 2016.05B.

Published as: Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2017) Analysis of Vitamin D₂ and Vitamin D3 by LC MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals. Journal of AOAC International 100, 298–302. DOI: $10.5740/jaoacint.2016_{05}$

Instrument Parameter	eter Value			
mobile phase	A = formic acid, 0.1% B = methanol, 100%			
column	Kinetex C ₁₈ core-shell, 2.6 μ m, 2.1 × 50 mm			
oven temperature	40 °C			
chiller temperature	15 °C			
injection volume:	3 µL			
initial flow rate:	0.6 mL/min (see gradient details below)			

Table 2016.05B. Chromatographic instrument settings

(b) Form high pressure gradients by mixing of the two mobile phases, A and B, using the procedure given in Table 2016.05C.

Time	Flow rate	Mobile Phase A	Mobile Phase B
(min)	(mL/min)	(%)	(%)
0	0.6	25	75
3.3	0.6	0	100
3.7	1.0	0	100
4.8	1.0	0	100
4.9	0.6	25	75

25

Table 2016.05C. Gradient procedure for chromatographic separation

I. Mass Spectrometry

5.5

 Set-up the mass spectrometer with the instrument setting shown in Table 2016.05D (note settings may be different instruments other than the one described in this method).

75

Table 2016.05D. Mass spectrometer settings

0.6

Instrument Parameter	Value
ionization mode	ESI+
curtain gas	30
nebulizer gas GS1	40
heater gas GS2	40
collision gas	N ₂
source temperature	300 °C
ion spray voltage	5500 V

(b) Compound specific parameters to be used are shown in Table 2016.05E and Table 2016.05F.

Table 2016.05E. Compound parameters (vitamin D2 instrument method only)

Vitamin D2 ion ^a	Precursor Ion	Product Ion	DP ^b (V)	EP ^c (V)	CE ^d (V)	CXP ^e (V)	Dwell Time (ms)
analyte quantifier	572.2	298.0			23	22	120
analyte qualifier	572.2	280.0	81	4.0	39	16	80
internal standard quantifier	578.2	298.0		10	23	22	120
internal standard qualifier	578.2	280.0			39	16	80

^a Analyte = vitamin D₂-PTAD adduct, Internal standard ion = d6-vitamin D2-PTAD adduct

^b DP = declustering potential

 c EP = entrance potential

^d CE = collision energy

^e CXP = collision cell exit potential

Table 2016.05F. Compound parameters (vitamin D₃ instrument method only)

Vitamin D3 ion ^a	Precursor Ion	Product Ion	DP⁵ (V)	EP ^c (V)	CE ^d (V)	CXP ^e (V)	Dwell Time (ms)
analyte quantifier	560.2	298.0	151		21	18	120
analyte qualifier	560.2	280.0			37	18	80
internal standard quantifier	566.2	298.0		10	21	18	120
internal standard qualifier	566.2	280.0			37	18	80

^a Analyte = vitamin D₃-PTAD adduct, Internal standard ion = *d6*-vitamin D3-PTAD adduct

^b DP = declustering potential

^c EP = entrance potential

^d CE = collision energy

^e CXP = collision cell exit potential

J. Calculations

(a) Concentration of d6-vitamin D2 in Vitamin D2 Stable Isotope Labelled Stock

Standard Solution:

$$SILD_2SS_{D2conc} = \frac{SILD_2SS_{abs(max)}}{E_{1cm}^{1\%}} \times 10000$$

where: SILD₂SS_{D2conc} = conc. of SIL *d6*-vitamin D2 in stock standard (units: µg/mL)

 $SILD_2SS_{abs(\lambda max)} = UV$ absorbance of stock standard at 265 nm (units: none)

 $E_{1cm}^{1\%}$ = extinction coefficient for vitamin D₂ in ethanol [461] (units: dL/g.cm)

10000 = concentration conversion factor (units: g/dL to µg/mL)

(b) Concentration of *d6*-vitamin D3 in Vitamin D3 Stable Isotope Labelled Stock Standard Solution:

$$SILD_{3}SS_{D2conc} = \frac{SILD_{3}SS_{abs(max)}}{E_{1cm}^{1\%}} \times 10000$$

where: $SILD_3SS_{D3conc}$ = conc. of SIL *d6*-vitamin D₃ in stock standard (units: $\mu g/mL$)

SILD₃SS_{abs($\lambda \max$)} = UV absorbance of stock standard at 265 nm (units: none) $E_{1cm}^{1\%}$ = extinction coefficient for vitamin D₃ in ethanol [485] (units: dL/g.cm) 10000 = concentration conversion factor (units: g/dL to µg/mL

(c) Concentration of *d6*-vitamin D₂ in Internal Standard:

SILIS _{D2conc} = SILD ₂SS_{D2conc} x
$$\frac{1.0}{10}$$
 × 1000

where: SILIS_{D2conc} = conc. of SIL *d6*-vitamin D₂ in internal standard (units: ng/mL)

SILD₂SS_{D3conc} = conc.of SIL *d6*-vitamin D₂ in stock standard (units: μ g/mL)

1000 = concentration conversion factor (units: μ g/mL to ng/mL)

(d) Concentration of d6-vitamin D₃ in Internal Standard:

SILIS _{D3conc} = SILD ₃SS_{D3conc}
$$x \frac{1.0}{10} \times 1000$$

where: SILIS_{D3conc} = conc. of SIL *d6*-vitamin D₃ in internal standard (units: ng/mL) SILD₃SS_{D3conc} = conc. of SIL *d6*-vitamin D₃ in stock standard (units: μ g/mL) 1000 = concentration conversion factor (units: μ g/mL to ng/mL)

(e) Concentration of non-labelled vitamin D₂ in Vitamin D₂ Non-Labelled Purity Standard Solution:

$$NLD_{2}PS_{D2conc} = \frac{NLD_{2}PS_{abs(max)}}{E_{1cm}^{1\%}} \times 10000$$

where: $NLD_2PS_{D2conc} = conc. of vitamin D_2 in purity standard (units: µg/mL)$ $NLD_2PS_{abs(\lambda max)} = UV$ absorbance of purity standard at 265 nm (units: none) $E_{1cm}^{1\%} = extinction coefficient for vitamin D2 in ethanol [461] (units: dL/g.cm)$ 10000 = concentration conversion factor (units: g/dL to µg/mL)

(f) Concentration of non-labelled vitamin D_3 in Vitamin D_3 Non-Labelled Purity Standard Solution:

$$NLD_{3}PS_{D3conc} = \frac{NLD_{3}PS_{abs(max)}}{E_{1cm}^{1\%}} \times 10000$$

where: NLD₃PS_{D3conc} = conc. of vitamin D3 in purity standard (units: $\mu g/mL$) NLD₃PS= UV absorbance of purity standard at 265 nm (units: none) $E_{1cm}^{1\%}$ = extinction coefficient for vitamin D3 in ethanol [485] (units: dL/g.cm) 10000 = conc. conversion factor (units: g/dL to $\mu g/mL$) Published as: Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2017) Analysis of Vitamin D_2 and Vitamin D3 by LC MS/MS in Milk Powders, Infant Formulas, and Adult Nutritionals. Journal of AOAC International 100, 298–302. DOI: 10.5740/jaoacint.2016_05

(g) Concentration of non-labelled vitamin D2 in Non-Labelled Working Standard Solution:

NLWS _{D2conc} = NLD ₂PS _{D2conc}
$$x \frac{1.0}{10} \times 1000$$

where: $NLWS_{D2conc} = conc.$ of vitamin D_2 in working standard (units: ng/mL) $NLD_2PS_{D2conc} = conc.$ of vitamin D_2 in purity standard (units: $\mu g/mL$)

(h) Concentration of non-labelled vitamin D3 in Non-Labelled Working Standard Solution:

NLWS _{D3conc} = NLD ₃PS _{D3conc}
$$x \frac{1.0}{10} \times 1000$$

where: NLWS_{D3conc} = conc. of vitamin D₃ in working standard (units: ng/mL) NLD₃PS_{D3conc} = conc. of vitamin D₃ in purity standard (units: μ g/mL) 1000 = concentration conversion factor (units: μ g/mL to ng/mL)

(i) Concentration of vitamin D2 and vitamin D3 in Calibration Standards:

$$CS1_{D2conc} = NLWS_{D2conc} \times \frac{0.01}{25} \qquad CS1_{D3conc} = NLWS_{D3conc} \times \frac{0.01}{25}$$
$$CS2_{D2conc} = NLWS_{D2conc} \times \frac{0.05}{25} \qquad CS2_{D3conc} = NLWS_{D3conc} \times \frac{0.05}{25}$$
$$CS3_{D2conc} = NLWS_{D2conc} \times \frac{0.25}{25} \qquad CS3_{D3conc} = NLWS_{D3conc} \times \frac{0.25}{25}$$
$$CS4_{D2conc} = NLWS_{D2conc} \times \frac{0.5}{25} \qquad CS4_{D3conc} = NLWS_{D3conc} \times \frac{0.5}{25}$$
$$CS5_{D2conc} = NLWS_{D2conc} \times \frac{1.25}{25} \qquad CS5_{D3conc} = NLWS_{D3conc} \times \frac{1.25}{25}$$

where: $CS1-5_{D2conc} = conc.$ of vitamin D_2 in Calibration Standards (units: ng/mL) $CS1-5_{D3conc} = conc.$ of vitamin D_3 in Calibration Standards (units: ng/mL) $NLWS_{D2conc} = conc.$ of vitamin D_2 in Working Standard (units: ng/mL) $NLWS_{D3conc} = conc.$ of vitamin D_3 in Working Standard (units: ng/mL)

(j) Concentration of stable isotope labelled vitamin D₃ in Calibration Standards:

CS1-5_{D2conc} = SILIS _{D2conc}
$$x \frac{0.25}{25}$$
 CS1-5_{D3conc} = SILIS _{D3conc} $x \frac{0.25}{25}$

where: $CS1-5_{D2conc} = conc. of SIL d6$ -vitamin D_2 in Calibration Stds (units: ng/mL) $CS1-5_{D3conc} = conc. of SIL d6$ -vitamin D_3 in Calibration Stds (units: ng/mL) $SILIS_{D2conc} = conc. of SIL d6$ -vitamin D_2 in Internal Standard (units: ng/mL) SILIS_{D3conc} = conc. of SIL *d6*-vitamin D3 in Internal Standard (units: ng/mL)

- (k) Determine the linear regression curve y = mx + c (using the "least squares" method) for the ratio of peaks areas (non-labelled vitamin D/stable isotope labelled vitamin D) vs. the ratio of concentrations (non-labelled vitamin D/stable isotope labelled vitamin D) for five calibration standards with the y-intercept forced through zero.
- (I) The concentration of vitamin D_2 in the sample is calculated as:

Result D₂ =
$$\frac{PA}{PA} \frac{NLD2}{SILD2} \times \frac{SILIS}{L} \frac{D2conc}{L} \times \frac{SILIS}{Smass} \times \frac{100}{1000}$$

where: Result D_2 = vitamin D_2 concentration in sample (units: $\mu g/hg$)

 PA_{NLD2} = peak area of vitamin D_2 in sample (units: none)

PA_{SILD2} = peak area of SIL *d6*-vitamin D₂ in sample (units: none)

SILIS_{D2conc} = conc. of *d6*-vitamin D₂ in Internal Standard (units: ng/mL)

L = slope of calibration curve (units: none)

SILIS_{vol} = volume of Internal Standard spiked to sample [0.5] (units: mL)

1000 = mass conversion factor (units: $\mu g/g$ to mg/g)

100 = mass conversion factor (units: mg/g to mg/hg)

S_{mass} = mass of sample (units: g)

(m) The concentration of vitamin D_3 in the sample is calculated as:

Result
$$D_3 = \frac{PA_{NLD3}}{PA_{SILD2}} \times \frac{SILIS_{D3conc}}{L} \times \frac{SILIS_{vol}}{S_{mass}} \times \frac{100}{1000}$$

where: Result D_3 = vitamin D_3 concentration in sample (units: $\mu g/hg$)

 $PANL_{D3} = peak area of vitamin D_3 in sample (units: none)$

 $PASIL_{D3}$ = peak area of SIL *d6*-vitamin D₃ in sample (units: none)

SILIS_{D3conc} = conc.of d6-vitamin D₃ in Internal Standard (units: ng/mL)

L = slope of calibration curve (units: none)

SILIS_{vol} = volume of Internal Standard spiked to sample [0.5] (units: mL)

1000 = mass conversion factor (units: $\mu g/g$ to mg/g)

100 = mass conversion factor (units: mg/g to mg/hg)

S_{mass} = mass of sample (units: g)

(n) The concentration of vitamin D3 in the sample is calculated as:

Result (IU/hg) = Result (μ g/hg) x 40

where: 40 = dietary conversion factor (units: μ g/hg to IU/hg)

K. Data Handling

Report result as μ g/hg to 1 decimal place or IU/hg to 0 decimal places.

L. References

- (1) Gill, B.D.; Zhu, X.; Indyk, H.E. (2015) A rapid method for the determination of vitamin D3 in milk and infant formula by liquid chromatography/tandem mass spectrometry. *Journal of AOAC International* 98, 431–435.
- (2) Gill, B.D.; Abernethy, G.A.; Green, R.J.; Indyk, H.E. (2016) Analysis of vitamin D2 and vitamin D3 in fortified milk powders and infant and nutritional formulas by liquid chromatography-tandem mass spectrometry: single laboratory validation, First Action 2016.05. *Journal of AOAC International* 99, 1321–1330.